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Abstract:  Hankin and Reeves’ (1988) approach to estimating fish abundance in small 

streams has been applied in stream-fish studies across North America.  However, as with 

any method of population estimation, there are important assumptions that must be met 

for estimates to be minimally biased and reasonably precise.  Consequently, I 

investigated effects of various levels of departure from these assumptions via simulation 

based on results from an example application in Hankin and Reeves (1988) and a 

spatially clustered population.  Coverage of 95% confidence intervals averaged about 5% 

less than nominal when removal estimates equaled true numbers within sampling units, 

but averaged 62% - 86% less than nominal when they did not, with the exception where 

detection probabilities of individuals were >0.85 and constant across sampling units 

(95% confidence interval coverage = 90%).  True total abundances averaged far (20% - 

41%) below the lower confidence limit when not included within intervals, which implies 

large negative bias.  Further, average coefficient of variation was about 1.5 times higher 

when removal estimates did not equal true numbers within sampling units ( VC  27.0=  

[ 0004.0SE = ]) than when they did ( 19.0VC = [ 0002.0SE = ]).  A potential 

modification to Hankin and Reeves’ approach is to include environmental covariates that 

affect detection rates of fish into the removal model or other mark-recapture model.  A 

potential alternative is to use snorkeling in combination with line transect sampling to 

estimate fish densities.  Regardless of the method of population estimation, a pilot study 

should be conducted to validate the enumeration method, which requires a known (or 

nearly so) population of fish to serve as a benchmark to evaluate bias and precision of 

population estimates.   
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 Abundance is the typical parameter estimated to monitor fish populations.  The 

traditional approach to estimating stream-fish abundance is to choose sites (i.e., sampling 

units) within a stream and then count fish within these sites.  For instance, sampling units 

could be defined as pools, riffles, and glides.  Choice of which sampling units to survey is 

based on either their perceived representativeness of the population of interest or some 

type of random sampling design.  Two of the more widely used methods to obtain within-

unit estimates of abundance are snorkeling and electrofishing (Dolloff et al. 1996 and 

Reynolds 1996, respectively, and references therein). 

 Building on earlier work by Hankin (1984), Hankin and Reeves (1988) developed 

a two-stage sampling approach that employed both snorkeling and electrofishing for 

estimating fish abundance in small streams.  A stream first is stratified by habitat type 

(e.g., riffles, pools, and glides) and reach location (e.g., lower, middle, and upper) and a 

systematic sample with a single random start is selected within each stratum (first stage).  

Visual estimates of fish numbers are concurrently obtained by 2 divers snorkeling within 

each selected unit (second stage).  Multiple pass removals using electrofishing are 

applied within a systematic subsample of the randomly selected units to provide a “true” 

count of fish based on Zippin’s (1958) estimator.  These removal estimates then are used 

in a ratio estimator (Cochran 1977) to adjust snorkel counts in non-electrofished units for 

incomplete detection of fish.   

Hankin and Reeve’s (1988) approach has been applied in stream-fish projects 

across North America, including those monitoring threatened and endangered species.  A 

recent search in Science Citation Index (Institute of Scientific Information, Philadelphia, 

Pa.) identified 45 articles that have cited their paper, although papers actually using their 
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approach is likely less than this number.  As with any method of population estimation, 

however, there are key assumptions underlying Hankin and Reeves’ approach that must 

be met for abundance estimates to be minimally biased and reasonably precise.  Here, I 

outline these assumptions, describe various factors that may lead to their violation, and 

use simulation to evaluate the degree to which these assumptions can be violated and still 

produce minimally biased and reasonably precise results.  In addition, I offer a potential 

modification and an alternative to Hankin and Reeves’ approach that represent possible 

avenues of future research and development.  I concentrate on their method of abundance 

estimation because their method of mapping sampling units was shown to perform 

reasonably well in field tests by Roper and Scarnecchia (1995).  

Key Assumptions and Potential Violations  

Key assumptions of the Hankin and Reeve’s (1988) approach relate to the ratio 

estimator used to correct snorkel counts for incomplete detection of fish within snorkeled 

units.  These assumptions inc lude a complete count of fish within electrofished units, a 

strong linear relationship between abundance estimates and average diver snorkel counts 

within surveyed units, and constant rates of detection of fish among surveyed units.  

Removal Estimates as Complete Counts 

Hankin and Reeves (1988) equated Zippin’s removal estimator with a complete 

count of fish within sampled units.  Important assumptions underlying this estimator 

include constant electrofishing effort for each sampling occasion, no births/immigration 

or deaths/emigration during the sampling period (closure assumption), and identical 

capture probabilities of fish within and among sampling occasions (Otis et al. 1978, 

White et al. 1982).  Previous studies using known numbers of fish indicated that Zippin 



                                      5

removal estimates underestimated true abundances by 13%– 52.5% (Bohlin and 

Sundstrom 1977, Peterson and Cederholm 1984, Rodgers et al. 1992, Riley et al. 1993). 

Use of standardized protocols for applying equal effort as well as blocknets to 

ensure population closure may be adequate to reasonably satisfy these two assumptions.  

However, with respect to population closure, lack of physical barriers to contain fish 

within each sampled unit during electrofishing will likely lead to movements of fish to 

areas beyond the unit boundaries.  That is, fish in small streams have been shown to 

exhibit a flight response to electrofishing current, causing them to move outside the 

sampled area (Nordwall 1999).  Violation of the closure assumption of this type will lead 

to negatively biased removal estimates (White et al. 1982).  The magnitude of bias will 

depend on the relative numbers of fish moving out of the sampling unit.  Hankin and 

Reeves (1988) made no mention of blocknets in their field study. 

Identical capture probabilities of fish both within and among sampling occasions 

will never be exactly met under field situations.  That is, capture rates of fish via 

electrofishing will vary with factors such as: fish density, fish behavior and size; habitat 

structure; environmental conditions (e.g., stream temperature, turbidity, etc.); sampling 

gear; and size of sampling unit (e.g., see Northcote and Wilkie 1963, Mesa and Schreck 

1989, Rodgers et al 1992, Bayley and Dowling 1993).  One or more of these factors can 

vary both spatially and temporally.  Although identical capture probabilities are not 

achievable under typical field conditions, removal methods may still produce useful 

results under high capture probabilities and large population sizes (e.g., 2-pass removals: 

>0.6 for >200 fish and >0.8 for >100 fish; Bohlin 1982).   
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Linear Relationship Between Removal Estimates and Snorkel Counts 

To be unbiased, the ratio estimator requires a straight line relationship between 

removal estimates (assumed true counts) and snorkel counts that passes though the origin, 

as well as a proportional relationship between variability in removal estimates and 

snorkel counts (Cochran 1977).  Confidence intervals based on the normal distribution 

apply for large samples.  In practice, one requires at least 30 samples and a coefficient of 

variation ( CV ) of less than 0.1 for both removal estimates and snorkel counts for the 

confidence intervals to be reasonable.  Otherwise, variances and confidence interval 

widths will be underestimated (Cochran 1977:156). 

A more or less proportional relationship between variances of removal estimates 

and snorkel counts seems at least approximately attainable.  One would expect an 

increased variance in counts with increased numbers of fish.  Conversely, correlations 

(r ) between snorkel counts and removal estimates will be affected by factors affecting 

sightability or catchability of fish within and among surveyed units (e.g., habitat 

structure, fish density, etc.).  Therefore, consistently high correlations between snorkel 

counts and removal estimates are not a certainty, despite the extremely high correlations 

reported by Hankin and Reeves (1988:840) for juvenile coho salmon (Oncorhynchus 

kisutch; r = 0.95 for pools and r = 0.99 for riffles) and juvenile steelhead trout 

(Oncorhynchus mykiss; r = 0.61 for pools and r = 0.98 for riffles).  For instance, 

correlations between snorkel counts and multiple pass removal estimates were low (r = 

0.20-0.44) for smaller size classes (70-100 mm) of brook trout (Salvelinus fontinalis), 

bull trout (Salvelinus confluentus), cutthroat trout (Oncorhynchus clarkii) and rainbow 
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trout (Oncorhynchus mykiss) sampled in 35 streams in northcentral Idaho and 

southwestern Montana (Table 1).   

Constant Detection Rates of Fish Among Surveyed Units 

Hankin and Reeves’ (1988) approach is essentially a double sample in which a 

“cheap” index (snorkel count) is adjusted for incomplete detection of fish by a more 

expensive and (presumably) accurate count (removal estimate).  Their approach also 

assumes constant detection or capture probabilities of fish among sampling units (Seber 

1982, Pollock and Kendall 1987).  Detection rates of fish can vary both temporally and 

spatially due to factors discussed previously.  Thus, detection rates are more likely to 

vary than remain constant among sampling units in typical field situations. 

Simulations  

Details 

I randomly generated 50,000 simulation runs in SAS (SAS, Inc., 2000) to 

investigate effects of different types and levels of violations to key assumptions of 

Hankin and Reeves’ (1998) approach on 95% confidence interval coverage and bias of 

population estimates.  Specifically, I investigated effects of different levels of correlation 

between removal estimates and diver counts (<0.80, 0.80-0.85, 0.85-0.90, 0.90-0.95, and 

0.95-1.0) under constant (1.0) and nonconstant (0.1-0.9) detection probabilities among 

sampling units and with removal estimates equal to (100%) and less than (0-99%) true 

numbers of fish within sampling units.  Further, I incorporated increased variances in 

removal estimates with larger snorkel counts.   

Strata, size of systematic samples, range of diver counts, and abundance were 

defined based on Hankin and Reeves’ (1988:838-842) example application.  Detection 
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rates of fish for diver counts were randomly chosen from 0.2-0.6, which was 

approximately the range reported by Rodgers et al. (1992).  Diver counts also were 

assumed to be independent as per Hankin and Reeves’ example.  I used spatial 

distributions with a standardized Morisita index  (Morisita 1962, Smith-Gill 1975) of 

0.51 to incorporate population clustering at the 95% confidence level (Krebs 1999), 

which mimicked spatial clustering of fish populations due to heterogeneity in stream 

habitats, schooling behavior of fish, and so forth.              

Results   

When removal estimates equaled true numbers of fish within sampling units, 95% 

confidence interval coverage averaged about 90% for both constant and nonconstant 

detection probabilities among units across the range of correlation values (Table 2).  

These intervals did not reach the nominal rate of coverage because there was a less than 

perfect linear relationship between removal estimates and diver counts, sample sizes were 

less than 30 (as per Hankin and Reeves example), coefficients of variation were greater 

than 0.1 ( 19.0VC = [SE =  0.0002]; minimum 11.0=  and maximum 47.0= ), and spatial 

clustering lead to an underestimation of the single systematic sample variance based on 

random sampling (i.e., it assumed a random spatial distribution of individuals; Scheaffer 

et al 1990).  Nonetheless, this rate of coverage is probably close enough to the nominal 

rate to be suitable for population estimation.  When not included within the 95% 

confidence interval, the true number often was within 8-10% of either end (Table 2). 

Hankin and Reeves’ (1988) approach performed poorly if a removal estimate did 

not equal the true number of fish (Table 2), with the exception where detection 

probabilities were >0.85 and constant across sampling units (95% confidence interval 
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coverage = 90%).  Average confidence interval coverage always was less than 40%, and 

no more than 20% when correlation values were <0.8.  Further, true values were typically 

far above or below the confidence limit for noncovered intervals, especially at lower 

correlation values (Table 2), which implies large bias.  Variability in population estimates 

was greater than those where removal estimates equaled true numbers of fish (true 

number > removal estimate: 27.0VC = [SE =  0.0004]; minimum 13.0=  and maximum 

73.0= ).  Also note that relatively few runs (452/12,500 [3.6%]) were produced with high 

correlation values (>0.90) under nonconstant detection probabilities among units and 

where removal estimates did not equal true numbers of fish.  This was probably due to 

additional variability of removal estimates as they represented differing proportions of 

true numbers of fish among sampling units, which mirrors natural situations. 

Potential Modification and Alternative 

Simulation results indicated that Hankin and Reeves’ (1988) approach may 

produce misleading results when removal estimates do not equal true numbers of fish 

within sampling units.  Therefore, in this section I discuss a potential modification and 

alternative to their approach.  I emphasize that these suggestions are not offered as 

definitive remedies, but rather as possible avenues for further research and development.  

In any event, untested methods of abundance estimation should be field tested and 

validated using a known population before they are fully implemented. 

Mark-Recapture Models and Individual Covariates 

A possible modification to Hankin and Reeves’ approach is to replace Zippin’s 

removal model, which is a mark-recapture model in which there is trap response (i.e., 

Model Mb; Otis et al. 1978, White et al. 1982), with another type of mark-recapture 
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model.  Within the mark-recapture framework, there are a number of models available 

that relax different assumptions related to capture probabilities of individuals, including a 

generalized removal model (Model Mbh) that accounts for heterogeneity in capture 

probabilities.  Further, one should incorporate individual covariates that represent the 

most important factors affecting capture probabilities of fish into the mark-recapture 

model.  These covariates would be measured at each surveyed unit.  Analogous 

applications have been suggested for both aquatic (Bayley 1993) and terrestrial (Pollock 

et al. 1984, Samuel at al. 1987, Steinhorst and Samuel 1989, Manly et al. 1996) 

environments.  Huggins (1989, 1991) developed mark-recapture models that allow 

individual covariates; these models have been incorporated into program MARK (White 

and Burnham 1999).   

Variance estimates produced by mark-recapture models typically are not 

corrected for overdispersion so that they underestimate the true variance, perhaps by as 

much as 2 to 3 times (Bayley 1993).  Quasi- likelihood (Wedderburn 1974) theory often is 

used as a basis for correction of overdispersed data (see Cox and Snell 1989, McCullagh 

and Nelder 1989).  At present, program MARK does not provide a variance inflation 

factor (Cox and Snell 1989) that corrects for overdispersion in this particular class of 

models, but it does allow users to specify different values of these factors into these 

models (G. White, Dept. of Fishery and Wildlife Biology, Colorado State University, 

Fort Collins, Colo., personal communication).   

Line Transect Sampling 

Line transect sampling has been broadly applied to both terrestrial and marine 

species (Buckland et al. 1993), but rarely to freshwater aquatic organisms.  Ensign et al. 
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(1995) applied line transect methods via snorkeling to estimate abundance of benthic 

stream fishes, but they did not compare their results to a known population and hence the 

usefulness of this technique within streams remains in question.  Nonetheless, line 

transect sampling potentially offers an alternative method to density estimation that 

deserves more investigation in stream environments. 

In line transect sampling, which is a form of distance sampling (Buckland et al. 

1993), the observer moves along a randomly selected line and records the perpendicular 

distance from the line to every individual (or group of individuals) detected or to the 

distance category containing it.  Then, the detection distances are fitted to a variety of 

models and the best fitting model is used to generate estimates of density and variance 

that have been adjusted for visibility bias and overdispersion (Buckland et al. 1993).  The 

critical assumptions for line transect sampling are that every individual on the transect are 

detected, distances are measured to each detected individual’s original location (or 

distance category), and distances (or distance categories) are measured without error.  In 

addition, reliable estimates generally require high detection rates for individual near the 

line and a minimum of 80 detections (Buckland et al. 1993).  If distance categories are 

used rather than individual distances, then at least 4-5 of these categories are required to 

adequately fit the detection function (Buckland et al. 1993).  Program DISTANCE 

(Laake et al. 1993, Thomas 1999) is available to analyze line transect data. 

In practice, detecting every fish on a line may be problematic, depending on the 

size classes that are being sampled.  Smaller fish may be hidden in the substrate and 

hence undetectable to the snorkeler.  This may be minimized if a species presence in the 

water column is strongly correlated with time of day.  For instance, bull trout may be 
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more visible to snorkelers at night than during the day (Peterson 2000).  There are 

methods that correct for incomplete detections on the line, but these typically require 

independent observers operating simultaneously (see Buckland et al. 1993:200-217 for a 

review of different methods).  However, note that Hankin and Reeves’ (1988) approach 

also requires independence of diver counts. 

Movement of fish in response to an observer prior to detection also is a concern in 

line transect sampling.  Violations of this assumption may be minimized via 

implementation of proper snorkeling protocol.  For instance, when moving slowly and 

carefully, snorkelers can approach close enough to identify individual rainbow and 

cutthroat trout during daytime without causing a flight response.  Further, bull trout 

typically remain stationary in the water column when spotlit at night (J. Guzevich, 

U.S.D.A Forest Service, Rocky Mountain Research Station, Boise, Idaho, personal 

communication).  In addition, bias related to fish movements will be minimized if these 

movements remain within a given distance category (see below). 

Accurate distance measurements to mobile individuals are more likely to be made 

if distances are recorded in categories.  Snorkelers could use a calibrated mask-bar 

(Swenson et al. 1988) or similar device to estimate distance categories to detected fish, 

assuming snorkelers could either maintain a constant height above the streambed or 

record this height with every distance measurement.  A somewhat analogous approach 

was used in aerial line transect surveys by Johnson et al. (1991) where marks on the struts 

of their airplane corresponded to a given distance from the line to a sighted object on the 

ground as long as the height above the ground was known.   
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Discussion 

Hankin and Reeves’ (1988) approach is particularly sensitive to the assumption 

that removal estimates are equal to true numbers of fish within surveyed units.  Previous 

studies have indicated that removal estimates can underestimate true abundance by more 

than 50% (e.g., Riley et. al 1993).  Although Hankin and Reeves recognized the 

shortcomings of using removal estimates in place of complete counts, they still believed 

their approach to be a practical alternative to estimating fish abundance in small streams.  

Nonetheless, this assumption should be evaluated before their approach is fully 

implemented  

When reviewing removal estimates, high precision should not be confused with 

low bias.  Low capture probabilities and population sizes (or violation of model 

assumptions) may yield highly precise abundance estimates that are far from the true 

population value.  This results in what Anderson et al. (1998) described as “highly 

precise, wrong answers.”  Estimated capture probabilities can be misleadingly high in 

these situations (White et al. 1982; see Riley et al. 1993 for empirical evidence) and 

hence should not be relied upon as an index to validity. 

A pilot study should be conducted to ensure that the proposed method for 

estimating abundance is both reasonable, with respect to its assumptions and feasibility, 

and cost-efficient (Burnham et al. 1987, Buckland et al. 1993, Thompson et al. 1998).  

Proper validation of an enumeration method requires a known (or nearly so) population 

of fish to serve as a benchmark to evaluate bias (e.g., use of a known stocked or marked 

population of fish by Rodgers et al. 1992).  Comparing two index or untested methods 

(e.g., snorkel counts vs. unverified removal estimates) will only reveal the relative 
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sampling efficiency between these methods.  This comparison is meaningless if the 

objective is validation, i.e., evaluating magnitude of bias.  Usefulness of these abundance 

estimates depends on how closely they approximate reality, not on how closely they 

approximate each other. 

  If neither Hankin and Reeves’ (1988) approach nor the suggested alternatives are 

feasible in a given stream, emphasis should be placed on developing alternatives to 

estimating fish abundance rather than simply defaulting to an existing approach that is 

known to be inappropriate.  Indeed, too often an existing method is implemented with 

little thought towards verifying whether it will produce meaningful abundance estimates 

in the species of interest.  I argue that poor data (i.e., seriously biased and imprecise 

abundance estimates) are worse than no data in this case.  Serious biases can lead to 

misleading interpretations, whereas “the inertia of...imprecise results must be overcome 

before a legitimate survey can be conducted” (Thompson et al. 1998:xii).  Great care and 

thought must be applied to designing and validating enumeration procedures, for 

population estimates are only as reliable as the data that generated them. 
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Table 1.  Estimated correlation coefficient (r) between snorkel counts and multiple pass removal estimates 

of smaller size classes (70-100 mm) of brook trout, bull trout, cutthroat trout, and rainbow trout in 35 

different small streams sampled in northcentral Idaho and southwestern Montana (R. Thurow, U. S. D. A. 

Forest Service, 316 E. Myrtle St., Boise, ID, unpublished data).   

 

Species 

 

No. of streams  

 

No. of stream sections 

 

r 

 

Brook trout 

 

8 

 

14 

 

0.38 

 

Bull trout 

 

25 

 

65 

 

0.20 

 

Cuttthroat trout 

 

16 

 

25 

 

0.20 

 

Rainbow trout 

 

17 

 

50 

 

0.44 
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Table 2.  Ninety-five percent confidence interval (CI) coverage of true total abundance and relative location of 

true total abundance and upper or lower 95% confidence limits (CL) from 50,000 simulation runs based on 

Hankin and Reeves’ (1988) approach and example application. 

Relationship between true total abundance 

and lower or upper CL for 95% CI not 

containing the true total abundance 

 

 

 

 

Detection 

probability 

among units 

 

 

Relationship 

between true 

unit numbers 

and removal 

estimates 

 

 

 

Removal 

estimate and 

diver count 

correlation 

 

 

Percent of 95% 

CIs containing 

true total 

abundance 

(no./total ) 

 

 

 

n 

 

Average 

% below 

(SE) 

 

 

 

n 

 

Average 

% above 

(SE) 

Same (1.0) Equal (100%) <0.80 93 (189/203)       3       4 (1)     11       8 (2) 

  0.80-0.85 90 (1024/1138)      38       7 (1)     76       8 (1) 

  0.85-0.90 88 (3049/3451)  129       8 (1)   273       8 (<1) 

  0.90-0.95 90 (4494/5014)     246       8 (<1)   274       7 (<1) 

  0.95-1.0 90 (2431/2694)    255 10 (1)       8       5 (1) 

 Unequal  

(0-99%) 

 

<0.80 

 

14 (58/427) 

 

       0 

 

- 

 

   369 

 

41(1) 

  0.80-0.85 18 (191/1052)        0 -    861     40 (1) 

  0.85-0.90 22 (435/2021)        0 -  1586     37 (1) 

  0.90-0.95 29 (892/3033)        1         6 (-)  2140     35 (<1) 

  0.95-1.0 38 (502/1320)        0 -    818     29 (1) 

Different 

(0.1-0.9) 

 

Equal (100%) 

 

<0.80 

 

94 (190/202) 

 

       3 

 

     5 (2) 

 

       9 

 

      5 (1) 

  0.80-0.85 90 (991/1105)      39      7 (1)      75       9 (1) 

  0.85-0.90 89 (3026/3391)    121      8 (1)    244       8 (<1) 

  0.90-0.95 89 (4565/5142)    331    10 (<1)    246       8 (<1) 
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  0.95-1.0 83 (2200/2660)    451    11 (<1)        9       9 (1) 

 Unequal 

 (0-99%) 

 

<0.80 

 

20 (1540/7806) 

 

      0 

 

- 

 

 6266 

 

    36 (<1) 

  0.80-0.85 28 (484/1718)       0 -  1234     31 (1) 

  0.85-0.90 35 (398/1123)       0 -    725     30 (1) 

  0.90-0.95 37 (158/432)       0 -    274     28 (1) 

  0.95-1.0 35 (7/20)       0 -      13     20 (4) 

 

 

 


